The characters of the symmetric group.

نویسنده

  • F D Murnaghan
چکیده

A short and simple derivation of the formula of Frobenius, which gives the dimensions of the irreducible representations of S(n), the symmetric group on any number, n, of symbols, is given. These dimensions are the characters of the identity element of the group, i.e., of the element all of whose cycles are unary. It is shown how a slight modification of Frobenius' formula yields, when n = 2p is even, the characters of an element of S(n) all of whose cycles are binary and, when n = 3p is a multiple of 3, the characters of an element of S(n) all of whose cycles are ternary and, generally, when n = kp is a multiple of any positive integer k, the characters of an element of S(n) all of whose cycles are of length k. It is noteworthy that the calculations become simpler, rather than more complicated, as k increases. Finally, this paper shows how to derive from Frobenius' formula the characters of an element of S(n) which has at least one unary cycle and, from the present modifications of Frobenius' formula, the characters of an element of S(n) which has at least one cycle of length k, k = 2, 3,..., n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry classes of polynomials associated with the dihedral group

‎In this paper‎, ‎we obtain the dimensions of symmetry classes of polynomials associated with‎ ‎the irreducible characters of the dihedral group as a subgroup of‎ ‎the full symmetric group‎. ‎Then we discuss the existence of o-basis‎ ‎of these classes‎.

متن کامل

A NOTE ON THE COMMUTING GRAPHS OF A CONJUGACY CLASS IN SYMMETRIC GROUPS

The commuting graph of a group is a graph with vertexes set of a subset of a group and two element are adjacent if they commute. The aim of this paper is to obtain the automorphism group of the commuting graph of a conjugacy class in the symmetric groups. The clique number, coloring number, independent number, and diameter of these graphs are also computed.

متن کامل

Automorphism Group of a Possible 2-(121, 16, 2) Symmetric Design

Let D be a symmetric 2-(121, 16, 2) design with the automorphism group of Aut(D). In this paper the order of automorphism of prime order of Aut(D) is studied, and some results are obtained about the number of fixed points of these automorphisms. Also we will show that |Aut(D)|=2p 3q 5r 7s 11t 13u, where p, q, r, s, t and u are non-negative integers such that r, s, t, u ? 1. In addition we prese...

متن کامل

Characters of Brauer's Centralizer Algebras

Brauer's centralizer algebras are finite dimensional algebras with a distinguished basis. Each Brauer centralizer algebra contains the group algebra of a symmetric group as a subalgebra and the distinguished basis of the Brauer algebra contains the permutations as a subset. In view of this containment it is desirable to generalize as many known facts concerning the group algebra of the symmetri...

متن کامل

Noncommutative Cyclic Characters of Symmetric Groups

We deene noncommutative analogues of the characters of the symmetric group which are induced by transitive cyclic subgroups (cyclic characters). We investigate their properties by means of the formalism of noncommutative symmetric functions. The main result is a multiplication formula whose commutative projection gives a combinatorial formula for the resolution of the Kronecker product of two c...

متن کامل

Generalized Characters of the Symmetric Group

Normalized irreducible characters of the symmetric group S(n) can be understood as zonal spherical functions of the Gelfand pair (S(n)×S(n),diag S(n)). They form an orthogonal basis in the space of the functions on the group S(n) invariant with respect to conjugations by S(n). In this paper we consider a different Gelfand pair connected with the symmetric group, that is an “unbalanced” Gelfand ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 68 2  شماره 

صفحات  -

تاریخ انتشار 1951